AN NMR AND ESR STUDY OF THE HYDROGEN EXCHANGE REACTION BETWEEN TRIMETHYLTIN HYDRIDE AND TRIMETHYLSTANNYL RADICALS

Manfred Lehnig

Lehrstuhl für Organische Chemie I der Universität,46 Dortmund 50,Germany

(Received in UK 13 July 1977; accepted for publication 25 August 1977)

A rapid hydrogen exchange reaction was found to take place between tin hydrides¹⁾. A radical exchange mechanism was formulated²⁾ and qualitatively shown by the observation of exchange broadening in the NMR spectrum of trimethyltin hydride in the presence of trimethylstannyl radicals³⁾. A quantitative investigation is presented, now. Furthermore, the influence of hydrogen exchange reactions on the ESR spectra of short living tin-centred radicals in solution is discussed. Whereas silicon- and germanium-centred free radicals can easily be observed during photolysis of di-t-butyl peroxide with the corresponding hydrides⁴⁾, only the trimethylstannyl and, more recently, the tris-(2-phenyl-2-methylpropyl)stannyl radical have been described^{5,6)}.

The following reaction scheme is given for the photochemical reaction of di-t-butyl peroxide with trimethyltin hydride

In the case of slow exchange, the line broadenings are given by $^{7,8)}$

$$\Delta H_{ms} (NMR) = \frac{1}{\pi} k \sqrt{\frac{r}{2k_1}} [Hz] [5]$$

$$\Delta H_{ms} (ESR) = \frac{1}{\pi} k [Me_3 SnH] [Hz] [6]$$

3663

Fig.1 shows NMR spectra a) without and b) during irradiation of $(t-BuO-)_2$ (0.2 m) with Me₃SnH (0.25 m) and tetramethyl silane (0.1 m) in cyclohexane-d₁₂ with the filtered light of a 1000 W Hg-Xe compact arc lamp ($\lambda > 305$ nm; further experimental details see ⁹⁾). The doublet at $\delta = 0.05$ ppm is due to Me₃SnH and broadened during irradiation. Fig.2 shows values of Δ H_{ms} plotted against \sqrt{r} .

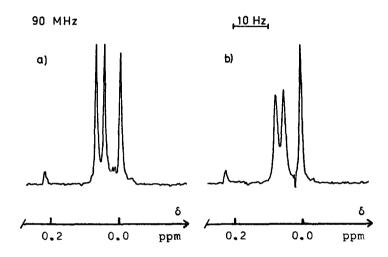


Fig.1: NMR spectra a)without and b)during irradiation of $(t-BuO-)_2$ with Me₃SnH in cyclohexane-d₁₂ at 25^oC

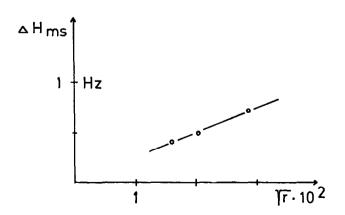


Fig.2: NMR line broadening of the Me_3Sn doublet during irradiation of (t-BuO-)₂ with Me_3SnH in cyclohexane-d₁₂ at 25^oC

By taking $2k_1 = 3.1 \cdot 10^9$ l/mol·sec, a value of $k = 4 \cdot 10^6$ l/mol·sec is derived¹⁰. It follows from [6] that appreciable line broadenings have to be expected in the ESR spectrum of Me₃Sn· while using high concentrations of the hydride. Fig.3 shows ESR spectra of Me₃Sn· taken during irradiation of $(t-BuO-)_2$ (2 m) with Me₃SnH at different concentrations in n-pentane at -80° C. Whereas a well resolved spectrum of Me₃Sn· is observed with [Me₃SnH] = 0.4 m, only broad signals are found with [Me₃SnH] = 2 m. At -40° C, only a poorly resolved spectrum is observed, even with [Me₃SnH] = 0.4 m. At -110° C, a well resolved ESR spectrum of Me₃Sn· can be observed with [Me₃SnH] = 2 m, too.

With n-Pr₃SnH and n-Bu₃SnH, well resolved ESR spectra of n-Pr₃Sn• and n-Bu₃Sn• are observed at -80° C using low concentrations of the hydrides. Et₃SnH, however, only gives a broad signal, even at -110° C. ESR data of the radicals are given in Table I. It was reported that $[C_6H_5-C(CH_3)_2-CH_2]_3$ SnH gives well resolved spectra even at $+120^{\circ}$ C. Because of the bulky groups at the tin atom, the k value seems to be reduced in this case.

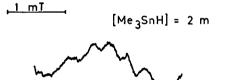


Fig.3: ESR spectra of $Me_3Sn \cdot during$ irradiation of $(t-BuO-)_2$ with Me_3SnH in n-pentane at $-80^{\circ}C$

 $[Me_3SnH] = 0.4 m$

Table I: ESR data of trialkyltin radicals in n-pentane at -80°C

	g value	a _H (ß)(mT)
Me ₃ Sn•	2.0163	0.31
Et ₃ Sn•	2.015	not resolved
n-Pr ₃ Sn•	2.0160	0.30
n-Bu ₃ Sn•	2.0160 ⁽¹¹⁾	0.31

<u>Acknowledgment</u>: The author thanks Prof.Neumann, Dortmund, for discussions and Prof.Davies, London, for communicating ESR results prior to publication.

REFERENCES

- 1) W.P.Neumann and R.Sommer, Angew.Chem. 75 (1963) 788
- 2) W.P.Neumann, "The Organic Chemistry of Tin", Wiley, London, 1970
- 3) M.Lehnig, Chem.Phys. 8 (1975) 419
- 4) J.K.Kochi, in "Advances in Free-Radical Chemistry", Vol.V, ed.G.H.Williams, Elec Science, London, 1975, p.189
- 5) G.B.Watts and K.U.Ingold, J.Amer.Chem.Soc. 94 (1972) 491
- 6) H.U.Buschhaus, M.Lehnig, and W.P.Neumann, J.C.S.Chem.Comm., 1977, 129
- 7) C.S.Johnson, J.Chem.Phys. 39 (1963) 2111
- 8) K.Scheffler and H.P.Stegmann, "Elektronenspinresonanz", Springer, Berlin-Heidelberg-New York, 1970
- 9) M.Lehnig, F.Werner, and W.P.Neumann, J.Organometal.Chem. 97 (1975) 375
- 10) D.J.Carlsson and K.U.Ingold, J.Amer.Chem.Soc. 90 (1968) 7047
- 11) P.Blum and A.G.Davies observed n-Bu₃Sn• in cyclopropane at -110^OC and reported a g value of 2.0158 (personal communication)